在正方体ABCD-A1B1C1D1,G为CC1的中点,O为底面ABCD的中心.求证:A1O⊥平面GBD
用向量的方法证明
还有一题 - -
在四棱锥P-ABCD中,底面ABCD是举行,侧棱PA垂直于底面,E、F分别是AB、PC的中点.(1) 求证:CD⊥PD (2)求证:EF‖平面PAD也用向量的方法证明 谢谢哈~
人气:114 ℃ 时间:2019-12-20 09:39:13
解答
1.以A为原点,分别以AB,AD,AA1为x,y,z轴建立坐标系,设AA1=2A1(0,0,2),O(1,1,0) 向量A1O=(1,1,-2),G(2,2,1),B(2,0,0),D(0,2,0),平面GBD的法向量n=(x,y,z)向量BD=(-2,2,0)向量GD=(-2,0,-1),向量n*向量BD=-2x+2y=0 x...
推荐
- 在正方体ABCD-A1B1C1D1,G为CC1的中点,O为底面ABCD的中心. 求证:A1O⊥平面GBD.
- 在正方体ABCD-A1B1C1D1中,E,F分别是DC和CC1的中点.求证:D1E⊥平面ADF.
- 在正方体ABCD-A1B1C1D1,G为CC1的中点,O为底面ABCD的中心. 求证:A1O⊥平面GBD.
- 在正方体ABCD -A1B1C1D1中,求证:平面ACD1⊥平面BB1D1D
- 如图,正方体ABCD-A1B1C1D1的棱长为1,O是底面A1B1C1D1的中心,则O到平面ABC1D1的距离为( ) A.12 B.24 C.22 D.32
- 英语小话剧,有中文,幽默有趣,4人,最好都是女生,可以说明道理,
- 已知f(x)是R上的奇函数,f(1)=2,且对任意x属于R都有f(x+6)=f(x)+f(3)成立,则f(3)= , f(2009)=
- She said that they _____a good time
猜你喜欢