> 数学 >
三阶矩阵A的行列式|A|=-1,且三维向量a1,a2是齐次线性方程组(A-I)x=0的一个基础解系,证明A可对角化.
人气:123 ℃ 时间:2020-06-21 12:13:30
解答
"三维向量a1,a2是齐次线性方程组(A-I)x=0的一个基础解系"
这句话已经告诉你两个特征值是1,对应的特征向量是a1,a2
再结合“三阶矩阵A的行列式|A|=-1”得到余下那个特征值是-1(当然也有1个1维的特征子空间)
既然三个特征向量都有了,自然可对角化
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版