三阶矩阵A的行列式|A|=-1,且三维向量a1,a2是齐次线性方程组(A-I)x=0的一个基础解系,证明A可对角化.
人气:123 ℃ 时间:2020-06-21 12:13:30
解答
"三维向量a1,a2是齐次线性方程组(A-I)x=0的一个基础解系"
这句话已经告诉你两个特征值是1,对应的特征向量是a1,a2
再结合“三阶矩阵A的行列式|A|=-1”得到余下那个特征值是-1(当然也有1个1维的特征子空间)
既然三个特征向量都有了,自然可对角化
推荐
- 已知a1,a2为列向量,矩阵A=(2a1+a2.a1-a2)b=(a1,a2)若行列式|A|=6 则|B|=?
- 非齐次线性方程组的系数矩阵秩为3,a1,a2,a3是它3个解向量,a1+a2=(1 0 2 1)T,a2+a3=(0 1 3 1)T,求通解.
- A是n阶矩阵,a1,a2,.an是线性无关的n维向量,满足Aai=ai+1(i从1取到n-1),Aan=a1,求A行列式值
- 设向量a1=(1,2,3,3),a2=(1,3,3,4),a3=(1,2,3,4)是系数矩阵为A的四元非齐次线性方程组的三个解向量
- 行列式、矩阵、向量的区别是:行列式是?;矩阵是?;向量是?
- 现在英国和美国货币中还有penny,dime,nickel,quarter这些符号吗?
- The poor man ----(be) hungry for quite a few days 中间填什么为什么
- 在晴朗的夏日中午,如果往叔或花的叶子上浇水,常会使叶子烧焦,你知道是为什么吗?
猜你喜欢