已知,在等腰梯形ABCD中,AB平行于DC,AB=DC,P为BC边上的一点,PE垂直于AB,PF垂直于CD,BG垂直于CD.垂足分别为E、F、G.求证:PE+PF=BG
人气:430 ℃ 时间:2020-01-26 02:13:39
解答
PE垂直于AB,PF垂直于CD BG垂直于CD
则 PE平行BG
PF平行BG
且四边形EFGB中 四个角均为90° (因为PE垂直于AB,PF垂直于CD BG垂直于CD )
则 四边形EFGB为矩形
则 EF=PE+PF=BG
推荐
- 如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点P为BC边上一点,PE⊥AB于点E,PF⊥DC于点F,BG⊥CD于点G,试说明PE+PF=BG.
- 如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点P为BC边上一点,PE⊥AB于点E,PF⊥DC于点F,BG⊥CD于点G,试说明PE+PF=BG.
- 如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点P为BC边上一点,PE⊥AB于点E,PF⊥DC于点F,BG⊥CD于点G,试说明PE+PF=BG.
- 在等腰梯形ABCD中,AD//BC,AB=DC,P为BC上任意一点,PE⊥AB于E,PF⊥CD于F,BG⊥CD于G.
- 等腰梯形ABCD中AD平行于BC,AB=DC,P是BC延长线上一点PE垂直于AB于E,PF垂直于CD于F,BG垂直于CD于G.求PE,PF,
- 空气污染怎么治理呢
- 《道德经》读后感 2000字
- a b为正实数1/a+1/b 与1/a+b大小关系及解析
猜你喜欢