证明:若函数f(x)在x=0上连续,在(0,&)内可导,且当x趋向于0+时,lim f ' (x)=A.则f+'(x)存在且等于A.
人气:424 ℃ 时间:2019-08-18 00:53:26
解答
说明极限lim(x→0+) (f(x)-f(0))/x=A即可.由拉格朗日中值定理,f(x)-f(0)=f'(ξ)x,ξ介于0与x之间,且随着x在变.所以x→0+时,ξ→0+.
所以,lim(x→0+) (f(x)-f(0))/x=lim(x→0+) f'(ξ)=lim(ξ→0+) f'(ξ)=A,所以f+'(0)存在且等于A
推荐
- 设f(x)在x=0处连续,且lim(x趋于0)f(x)/x^2=1 ,证明函数f(x)在x=0处可导且取得极小值.
- 证明:若x→+∞及x→-∞时,函数f(x)的极限都存在且都等于A,则lim x→∞f(x)=A
- 设函数f(x)在(a,+∞ )上可导,且lim(x->+∞ )(f(x)+f'(x))=0,证明:lim(x->+∞ )f(x)=0
- 设函数f(x)在区间[a,+∞)上连续,有lim(x→+∞)f(x)存在且有限.证明:f(x)在[a,+∞)上有界
- f(x)是定义在(0,+∞)上的连续可微函数,且lim(x->+∞)(f(x)+f ' (x))=0,证明lim(x->+∞)f(x)=0
- 一个长方体水箱,里面水深1.把一个圆柱体完全浸在水中,已知圆柱体铁块与圆锥体底面半径比
- 一位澳大利亚医生的英文怎么说
- 2道首字母填空的英语题……
猜你喜欢