设f(x)在x=0处连续,且lim(x趋于0)f(x)/x^2=1 ,证明函数f(x)在x=0处可导且取得极小值.
人气:118 ℃ 时间:2019-08-17 22:03:54
解答
1、f(0)=lim f(x)=lim f(x)/x^2 *lim x^2=1*0=0,
于是f'(0)=lim [f(x)-f(0)]/x
=lim f(x)/x^2*x
=lim f(x)/x^2 *lim x
=1*0=0,
即f'(0)=0.
2、对e=1/2,存在d>0,使得
0
推荐
- 设f(x)在x=0处连续,且lim(x趋于0)f(x)/x^2=1 ,证明函数f(x)在x=0处可导且取得极小值.
- 设函数f(x)在(a,+∞ )上可导,且lim(x->+∞ )(f(x)+f'(x))=0,证明:lim(x->+∞ )f(x)=0
- 设函数f(x)在区间[a,+∞)上连续,有lim(x→+∞)f(x)存在且有限.证明:f(x)在[a,+∞)上有界
- 证明:若函数f(x)在x=0上连续,在(0,&)内可导,且当x趋向于0+时,lim f ' (x)=A.则f+'(x)存在且等于A.
- 设函数f(x)在(0,1]内连续可导,且lim(x趋向于0+)(√x)f`(x)存在,证明f(x)在(0,1]内一致连续
- 为什么计算车的速度说的时速和公里是怎样计出来的?
- 1346算24点
- 某城市决定用一种特殊的合金材料为一见义勇为的英雄人物浇铸塑像.塑像的体积为2m3,设计时先用同样的金属材料浇铸了一个按比例缩小的小样,测得小样的体积为20cm3,质量为70g.求:
猜你喜欢