设f(x)在x=0处连续,且lim(x趋于0)f(x)/x^2=1 ,证明函数f(x)在x=0处可导且取得极小值.
人气:437 ℃ 时间:2019-08-17 22:03:54
解答
1、f(0)=lim f(x)=lim f(x)/x^2 *lim x^2=1*0=0,
于是f'(0)=lim [f(x)-f(0)]/x
=lim f(x)/x^2*x
=lim f(x)/x^2 *lim x
=1*0=0,
即f'(0)=0.
2、对e=1/2,存在d>0,使得
0
推荐
- 设f(x)在x=0处连续,且lim(x趋于0)f(x)/x^2=1 ,证明函数f(x)在x=0处可导且取得极小值.
- 设函数f(x)在(a,+∞ )上可导,且lim(x->+∞ )(f(x)+f'(x))=0,证明:lim(x->+∞ )f(x)=0
- 设函数f(x)在区间[a,+∞)上连续,有lim(x→+∞)f(x)存在且有限.证明:f(x)在[a,+∞)上有界
- 证明:若函数f(x)在x=0上连续,在(0,&)内可导,且当x趋向于0+时,lim f ' (x)=A.则f+'(x)存在且等于A.
- 设函数f(x)在(0,1]内连续可导,且lim(x趋向于0+)(√x)f`(x)存在,证明f(x)在(0,1]内一致连续
- 设x大于等于2,则函数y=[(x+5)(x+2)]/2的最小值为多少?
- I would always like your friend,I wish you happiness这段话是什麽意思?
- 若0
猜你喜欢