设a1,a2为n维列向量,A为n阶正交矩阵,证明[Aa1,Aa2]=[a1,a2]
人气:491 ℃ 时间:2020-04-03 17:43:24
解答
因为A为正交矩阵
所以 A^TA=E.
所以
[Aa1,Aa2] = (Aa1)^T(Aa2) = a1^TA^TAa2 = a1^Ta2 = [a1,a2]
推荐
- 设a1,a2为n维列向量,A为n阶正交矩阵,证明:(1)[Aa1,Aa2]=[a1,a2] (2){Aa1}={a1}
- 设α使n维列向量,A是n阶正交矩阵,则
- 设A为n阶矩阵,a1,a2,...an为n维列向量,an!=0,Aa1=a2,...Aan=0,求证
- 设a1,a2,...as均为n维列向量,A是m×n矩阵,若a1,a2…,as线性无关,则Aa1,Aa2,……,Aas线性无关是错的?
猜你喜欢