设a1,a2,...as均为n维列向量,A是m×n矩阵,若a1,a2…,as线性无关,则Aa1,Aa2,……,Aas线性无关是错的?
人气:130 ℃ 时间:2020-04-07 17:07:57
解答
是错的.
A=0 时显然 Aa1,Aa2,……,Aas 线性相关.
推荐
- 设a1,a2为n维列向量,A为n阶正交矩阵,证明[Aa1,Aa2]=[a1,a2]
- 设a1,a2为n维列向量,A为n阶正交矩阵,证明:(1)[Aa1,Aa2]=[a1,a2] (2){Aa1}={a1}
- a1,a2,…an是一组n维向量,证明:它们线性无关的充分必要条件是任一n维向量组都可以由它们线性表示.
- 已知n维向量a1,a2,a3,a4,a5线性无关,A是n阶可逆矩阵,证明Aa1,Aa2,Aa3,Aa4,Aa5线
- 设A为n阶矩阵,a1,a2,...an为n维列向量,an!=0,Aa1=a2,...Aan=0,求证
- 有两篇作文老师说我的分论点不成立,请问原因,且怎么改进?
- 设A是任意n阶矩阵,A^m=0,而I是n阶单位矩阵,证明I—A可逆,且(I—A)=I+A+A^2+……+A^m-1
- 四大文明古国的医学思想有何相同和不同?
猜你喜欢