数学题(有关圆的方程)
已知曲线C:X^2+Y^2-4MX+2MY+20M-20=0
1)求证:不论M取任何实数曲线C恒过一定点
2)证明当M≠2时,曲线C表示一个圆,且圆心在一条直线上.
人气:133 ℃ 时间:2020-04-05 19:57:50
解答
1)证明:x^2+y^2-4mx+2my+20m-20=0可化为(x-2m)^2+(y+m)^2=5(m-2)^2当m=2时,C为一个点,则该定点坐标为(4,-2)将该定点带入原方程C,得0=0,与m无关.所以不论m取何实数,曲线C恒过定点(4,-2).2)证明:当m=/2时,5(m-...
推荐
猜你喜欢
- 2,5,10,17……的通项公式是什么
- 数学怎么在最后一星期提高20分?
- 煤气灶出来的火是黄火好还是蓝火好?如果出来的是黄火,说明煤气有问题还是灶有问题?
- {int x=1,a=0,b=0;switch(x){ case 0:b++; case 1:a++; case 2:a++;b++;} printf("a=%db=%d\n",a,b);
- day off与vacation holiday的区别
- .steven took part in five basketball matches,()()()()was in March this year
- 已知log2的3次方=m 求log6的2次方的值
- 一个数分别以2,3,5都余1,这个数最小是多少?100之内有几个这样的数?