则:
F‘(a)=[af(a)-∫(0,a)f(x)dx]/a^2
=∫(0,a)(f(a)-f(x))dx/a^2
因为x《a,f(x)在[0,1]是单调递减,故f(a)-f(x)不好意思第一:af(a) 不等于∫(a,0)f(a)dx 因为微分中值定理∫(b,a)f(x)dx=f(c)*(b-a),a=
推荐
- 设f(x)在[0,1]上是单调递减函数 试证明对于任何q属于[0,1]都有不等式∫q/0 f(x)dx≥q∫1/0f(x)dx 求详解
- 设f(x)在[0,1]上单调递减的连续函数 试证明对于任何q∈[0,1]都有不等式∫0→q f(x)dx≥q∫ 0→1 f(x)dx
- 函数f(x)在[0,1]上单调减少且可积,证明:∫(a,0)f(x)dx=a∫(1,0)f(x)dx.(0
- 设y=f(x)在(-∞,+∞)上连续且单调递减,试证:函数F(x)=∫ {0,x}(x-2t)f(t)dt 在(-∞,+∞)单调递
- 设函数f(x)在[0,1]上连续且非负,证:存在ζ∈(0,1)使ζf(ζ)=∫(1,ζ)f(x)dx
- 一个正方体的地面积是49平方分米,它的体积是多少立方分米
- I have read up to (where'what) the children discover the secret cave.选what还是where.
- 怎么样用数列极限的定义证明lim0.999…9(n个)=1(n趋近于无穷)
猜你喜欢