> 数学 >
若方程(a2+c2)x2+2(b2-c2)x+c2-b2=0有两个相等的实数根,且a、b、c是△ABC的三条边,求证:△ABC是等腰三角形.
人气:399 ℃ 时间:2019-08-20 01:08:13
解答
证明:∵方程(a2+c2)x2+2(b2-c2)x+c2-b2=0有两个相等的实数根,∴△=0,即[2(b2-c2)]2-4(a2+c2)(c2-b2)=0,即(b2-c2)(b2-c2+a2+c2)=0∴(b2-c2)(b2+a2)=0∵b2+a2>0∴b2-c2=0,即b=c,∴△ABC是等...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版