设数列an的前n项和为sn 已知a1=a ,an+1=sn+3^n设bn=sn-3^n,求bn的通项公式
人气:212 ℃ 时间:2019-08-17 15:43:34
解答
S(n)+3^n=a(n+1)=S(n+1)-S(n),S(1)=a(1)=a.
S(n+1)=2S(n)+3^n,
S(n+1)-3^(n+1)=2S(n)+3^n-3*3^n=2[S(n)-3^n],
{b(n)=S(n)-3^n}是首项为b(1)=S(1)-3=a-3,公比为2的等比数列.
b(n)=(a-3)2^(n-1),n=1,2,...
推荐
- 设数列{An}的前n项的和为Sn已知A1=a A(n+1)=Sn+3^n (1)设Bn=Sn-3^n 求数列{Bn}的通项公式?
- 设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3^n,n∈N+.设bn=Sn+3n,求数列{bn}的通项公式
- 设数列{an}满足a1=2,an+1-an=3*2^2n-1 (1)求数列{an}的通项公式 (2)b=nan,求数列{bn}的前n项和Sn
- 设数列{an}的前n项和为Sn已知a1=a,an+1=Sn+3,n∈N*,设bn=Sn-3^n,求数列{bn}的通项公式
- 设数列满足a1=2,an+1-an=3•22n-1 (1)求数列{an}的通项公式; (2)令bn=nan,求数列{bn}的前n项和Sn.
- 1.用下列单词填空 be play study talk do make A:What are you doing B:I( )
- there is sometimes heavy snow 同义句
- she wants to take pictures () me.
猜你喜欢