设函数f(x)+2x^3+3ax²+3bx+c在x=1及x=2时取得极值求a.b的值
人气:305 ℃ 时间:2019-08-18 16:47:26
解答
函数f(x)=2x^3+3ax²+3bx+c在x=1及x=2时取得极值
所以
f'(x)=6x²+6ax+3b=0
x=1或2
从而
6+6a+3b=0
24+12a+3b=0
a=-3,b=4.
推荐
- 设函数f(x)=2x^3+3ax^2+3bx+8c在x=1和x=2时取得极值,求a,b
- 设函数f(x)=2x²+3ax²+3bx+8c,在x=1及x=2时取得极值,求a,b的值?
- 设函数f(x)=2x^3+3ax^2+3bx+8c在x=1及x=2时取得极值.求a,b值.
- 设函数f(x)=2x∧3+3ax∧2+3bx+8c,在x=1及x=2时取得极值 (1)求a.b的值 (2)若对于任意x∈的都有f(x)<c
- 设函数f(x)=2x^3+3ax^2+3bx+8c在x=1及x=2取得极值(1)f(x)增区间(2)若对x属[0,3】都有f(x)<c^成立,
- 一堆煤,已经运走15吨,正好是这堆煤的1/4,又运走原来的1/3,一共运走多少吨
- 用简便方法计算下面各题. 3.8×6.7+3.3×3.8 1.28×0.29-0.29×0.28 101×4.8 56×12.5×2.
- 下面是两种移动电话计费方式表 月租费 方式一:50元/月 方式二:0
猜你喜欢