1 |
4 |
1 |
4 |
1 |
2 |
=sin
1 |
4 |
1 |
4 |
1 |
2 |
=
1 |
2 |
1 |
2 |
1 |
2 |
=−
1 |
4 |
根据正弦函数的性质,
其极值点为x=kπ+
π |
2 |
它在(0,+∞)内的全部极值点构成以
π |
2 |
数列{an}的通项公式为
an=
π |
2 |
2n−1 |
2 |
(2)由(1)得出bn=2nan=
π |
2 |
∴Tn=
π |
2 |
2Tn=
π |
2 |
两式相减,得−Tn=
π |
2 |
=
π |
2 |
8(1−2n−1) |
1−2 |
=
π |
2 |
=-π[(2n-3)•2n+3]
∴Tn=π[(2n-3)•2n+3](12分)
1 |
4 |
1 |
4 |
1 |
2 |
1 |
4 |
1 |
4 |
1 |
2 |
1 |
4 |
1 |
4 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
4 |
π |
2 |
π |
2 |
π |
2 |
2n−1 |
2 |
π |
2 |
π |
2 |
π |
2 |
π |
2 |
π |
2 |
8(1−2n−1) |
1−2 |
π |
2 |