> 数学 >
在锐角三角形ABC中,a、b、c分别是角A、B、C的对边,且
3
a-2csinA=0.
(Ⅰ)求角C的大小;
(Ⅱ)若c=2,求a+b的最大值.
人气:277 ℃ 时间:2020-03-28 22:43:58
解答
(Ⅰ)由
3
a-2csinA=0,及正弦定理,得
3
sinA-2sinCsinA=0,
∵sinA≠0,
∴sinC=
3
2

∵△ABC是锐角三角形,
∴C=
π
3

(Ⅱ)∵c=2,C=
π
3
,∴由余弦定理得:a2+b2-2abcos
π
3
=4,即a2+b2-ab=4,
∴(a+b)2=4+3ab≤4+3•(
a+b
2
2,即(a+b)2≤16,
∴a+b≤4,当且仅当a=b=2取“=”,
则a+b的最大值是4.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版