若lim(2n+(an^2-2n+1)/(bn+2))=1 求a/b的值
人气:368 ℃ 时间:2020-06-14 09:21:32
解答
纠正一下:你必须写x趋向无穷大!
可化为:
lim(2bn^2+4n+an^2-2n+1)/(bn+2)=1
lim[(2b+a)n^2+2n+1]/(bn+2)=1
因为lim(2n+(an^2-2n+1)/(bn+2))=1为一常数,
所以可知.分子分母最高阶次相等
则因为分母最高阶次为1.
所以a+2b=0
则可化为
lim(2n+1)/(bn+2))=1
上下除以2
则lim(2+1/n)/(b+2/n)=1
则b=2
所以a=-4
所以a/b=-2
推荐
- a,b为常数.lim(n->无穷)an^2+bn+2/2n-1=3 求a,b
- 若lim[2n+(an^2+2n+1)/(bn+1)=1,则a+b
- 若lim[(an^2+bn+c)/(2n-3)]=-2,则a+b=
- lim (n→∞) [(an^2+bn+c)/(2n+5)]=3,求a,b
- 1 lim[2n+1-根号(an^2+bn+1)]=2 求a b的值
- 物体做匀加速直线运动,加速度为2m/s2,物体速度的变化是2/s为何不对
- 在梯形ABCD中,向量AB=2向量DC,AC 与BD交于O点,若AB=a,AD=b,则OC=
- 对don not play with the fire怎么回答
猜你喜欢
- 如图,∠AOB是直角,OD平分∠BOC,OE平分∠AOC,求∠EOD的度数.
- rimming 和 vanilla
- 1/x=2是不是一元一次方程?
- 一罐啤酒多少热量相当于几个馒头
- 已知{an},{bn}都是等比数列,它们的前n项和分别为Sn,Tn,且Sn/Tn=(3的n次方+1)/4,对n属于N心恒成立,则a(n+1)/b(n+1)= A.3的n次方 B.4的n次方 C.3的n次方或4的n次方 D.(4/3)的n次方
- 函数f(x)=sinx+2|sinx|(x∈[0,2π)的图象与直线y=k有且仅有两个不同的交点,则k的取值范围是( ) A.[-1,1] B.(1,3) C.(-1,0)∪(0,3) D.[1,3]
- 小明3天看了一本书的4分之一,平均每天看了一本书的几分之几,七天能看完这本书的几分之几
- 放在光滑的水平面上的一辆小车的长度为L,质量等于M.在车的一端站一个人,人的质量等于m,开始时人和车都保持静止.当人从车的一端走到车的另一端时,小车后退的距离为