2 |
3cosA |
2sin2A=3cosA即(2cosA-1)(cosA+2)=0,
解得:cosA=
1 |
2 |
而a2-c2=b2-mbc可以变形为
b2+c2-a2 |
2bc |
m |
2 |
即cosA=
m |
2 |
1 |
2 |
(2)由(1)知cosA=
1 |
2 |
| ||
2 |
又
b2+c2-a2 |
2bc |
1 |
2 |
所以bc=b2+c2-a2≥2bc-a2,即bc≤a2.
故S△ABC=
bc |
2 |
a2 |
2 |
| ||
2 |
3
| ||
4 |
2 |
3cosA |
3 |
2 |
3cosA |
1 |
2 |
b2+c2-a2 |
2bc |
m |
2 |
m |
2 |
1 |
2 |
1 |
2 |
| ||
2 |
b2+c2-a2 |
2bc |
1 |
2 |
bc |
2 |
a2 |
2 |
| ||
2 |
3
| ||
4 |