| 2 |
| 3cosA |
2sin2A=3cosA即(2cosA-1)(cosA+2)=0,
解得:cosA=
| 1 |
| 2 |
而a2-c2=b2-mbc可以变形为
| b2+c2-a2 |
| 2bc |
| m |
| 2 |
即cosA=
| m |
| 2 |
| 1 |
| 2 |
(2)由(1)知cosA=
| 1 |
| 2 |
| ||
| 2 |
又
| b2+c2-a2 |
| 2bc |
| 1 |
| 2 |
所以bc=b2+c2-a2≥2bc-a2,即bc≤a2.
故S△ABC=
| bc |
| 2 |
| a2 |
| 2 |
| ||
| 2 |
3
| ||
| 4 |
| 2 |
| 3cosA |
| 3 |
| 2 |
| 3cosA |
| 1 |
| 2 |
| b2+c2-a2 |
| 2bc |
| m |
| 2 |
| m |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| b2+c2-a2 |
| 2bc |
| 1 |
| 2 |
| bc |
| 2 |
| a2 |
| 2 |
| ||
| 2 |
3
| ||
| 4 |