> 数学 >
已知函数f(x)=2/x-1 (1)判断f(x)在(0,+∞)上的单调性并加以证明; (2)求f(x)的定义域、值域;
已知函数f(x)=2x-2/x 证明f(X)在(0,正无穷大上)为增函数
下面还有 一题
人气:124 ℃ 时间:2019-08-19 22:34:09
解答
f(x) = 2/x - 1
∵x在定义域内单调增,∴f(x) = 2/x - 1在定义域内单调减
证明:
令0<x1<x2
f(x2)-f(x1) = (2/x2 - 1)-( 2/x1 - 1)
= 2/x2 - 2/x1
= 2(x1-x2)/(x1x2)
∵0<x1<x2
∴x1-x2<0,x1x2>0
∴f(x2)-f(x1) =2(x1-x2)/(x1x2)<0
,∴f(x)在(0,+∞)上单调减
分母不为零:x≠0
定义域:(-∞,0)U(0,+∞)
x≠0,∴y≠-1
值域(-∞,-1)U(-1,+∞)
f(x) = 2x - 2/x
令0<x1<x2
f(x2)-f(x1) = (2x2 - 2/x2)-(2x1 - 2/x1)
= 2(x2-x1)+2(1/x1-1/x2)
=2(x2-x1)+2(x2-x1)/(x1x2)
∵0<x1<x2
∴∴x2-x1>0,x1x2>0
∴f(x2)-f(x1) =2(x2-x1)+2(x2-x1)/(x1x2)>0
∴f(x)在(0,+∞)上单调增
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版