设等比数列an的首项为a(a>0),公比为q(q>0)前n项和为80,其中最大的一项为54,它的前2n项的和为6560,求a和q
Sn=a1(1-q^n)/(1-q),S2n=a1(1-q^2n)/(1-q)
S2n/Sn=1+q^n=82
q^n=81,由于n是正整数
故q>1,所以a1=q-1
若末项最大,则an=a1q^(n-1)=q^n*a1/q=81(1-q)/q=54
q=3,a1=2
an=2*3^(n-1) 这里面为什么a1=q-1?
人气:265 ℃ 时间:2020-09-10 00:18:59
解答
S2n/Sn=1+q^n=82,由这个式子可以看出,q^n=81,将它代入Sn=a1(1-q^n)/(1-q)=80,就可以得到,a1=80(1-q)/(-80)=q-1.懂了吧?
推荐
- 设一个等比数列的首项为a(a>0),公比为q(q>0),其前n项和为80,而其中最大的一项为54,又其前2n项和为6560,求a和q.
- 设等比数列首项为a1《大于零》公比为q,前n项的和为80,其中最大的一项为54,又前2n项和为6560,求a1,q
- 数列{an}为正项等比数列,它的前n项和为80,其中数值最大的项是54,前2n项的和为6560,求a1,公比q 和a1中
- 已知等比数列{an}的各项都是正数,Sn=80,S2n=6560,且在前n项中,最大的项为54,求n的值.
- 等差数列an为等比数列且 an大于0,前n项和为SN=80,前2n项和为sn=6560.前n项中最大一项为54,求an
- 用一句话概括中心
- 青年志愿者标志的含义是什么?
- ∫[x^2/(4 - x^2)^(1/2)]dx这个不定积分怎么做?
猜你喜欢