已知函数f(x)=|log2|x-1||,且关于x的方程[f(x)]2+af(x)+b=0有6个不同的实数解,若最小实数解为-3,
我有看过网上的答案.但是为什么知道有6个不同的实数解,就可以知道方程t2+at+2b=0有一零根和一正根呢?
人气:428 ℃ 时间:2019-10-24 05:30:39
解答
先把图像做出来,很好作图,关于x=1对称(电脑上实在不好画图,不然我就帮你画了),与X轴0,2两个交点,假设方程t2+at+b=0只有一根的话,fx最多只有四个根,即方程四个不同实数解,不符题意,所以方程有两个不等的实根,fx大于等于0,若是两不等正根,则有8个不同实数解,只有一个为0,一个为正根,才能有6个不同实数解
图画出来,一目了然
推荐
- 已知函数f(x)=log2(a-2-x/x-a)是奇函数,若关于x的方程f-1(x)=m2^-X实数解求m的值
- 设函数f(x)=log2^(2^x+1)的反函数为y=f^-1(x),若关于x的方程f^-1(x)=m+f(x)在【1,2】上有解,实数m的范围
- 已知A为实数,f(x)=a-2/(2^x+1).当f(x)是奇函数时,若方程f(x)反函数=log2(x+t)总有实数根,求 T的范围
- 如果函数f(x)对任意的实数x,都有f(1+x)=f(-x),且当x≥12时,f(x)=log2(3x-1),那么函数f(x)在[-2,0]上的最大值与最小值之和为( ) A.2 B.3 C.4 D.-1
- 已知函数f(x)=log2(a-2x)+x-2,若f(x)存在零点,则实数a的取值范围是( ) A.(-∞,-4]∪[4,+∞) B.[1,+∞) C.[2,+∞) D.[4,+∞)
- 小明家离书城有14米,一天爸爸开车去书店开10千米要七分之五升油,问:来回一趟要多少油?
- 两个有理数的积的绝对值,等于这两个有理数的绝对值的积,
- 直角三角形,知道两边长,如何算另一边长?
猜你喜欢