> 数学 >
已知实数x,y,z,满足x+y+z=0,xyz=1,求证:x,y,z中有且只有一个数不小于开3次根号4
人气:397 ℃ 时间:2020-05-05 04:06:53
解答
由y+z=-x yz=1/x5
构造一元二次方程 m*m+x*m+1/x=0
判别式=x*x-4/x〉0 得x *x 〉 4/x
显然 x!=0 若x〉0 则x大于开3次根号4 且此时y z 同号 都为 负数
命题结论成立
若 x 小于 0 则 y z 异号 不妨设 y〈0 则 可构造 以 x y 为 两负根的一元二次方程 m*m+z*m+1/z=0 此时 可得出 z大于开3次根号 4 的结论 命题结论仍成立
综上 ,结论 得证
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版