数列{an}.a1=4,an=4-4/an-1(n>1),bn=1/(an-2),证明数列{bn}是等差数列,及求出数列{an}的通项
要祥解
人气:118 ℃ 时间:2019-08-20 17:43:18
解答
bn-b(n-1)=1/[2-4/(an-1)]-1/[a(n-1)-2]
=a(n-1)/[2a(n-1)-4]-2/[2a(n-1)-4]
=[a(n-1)-2]/[2a(n-1)-4]
=1/2
所以数列{bn}是以b1=1/2为首项,公差为1/2的等差数列.
所以bn=n/2,故an=2+2/n
推荐
- 数列{an}.a1=4,an=4-4/an-1(n>1),bn=1/(an-2),证明数列{bn}是等差数列,及求出数列{an}的通项
- 在数列{an}中,a1=1,an+1=2an+2n; (1)设bn=an2n−1.证明:数列{bn}是等差数列; (2)求数列{an}的通项公式.
- a1=1,an+1=2an+2^n 设bn=an/2^n-1 1证明bn是等差数列 2求an前n项和sn
- 在数列{an}中,a1=3,an+1=3an+3n+1.(1)设bn=an3n.证明:数列{bn}是等差数列;(2)求数列{an}的前n项和Sn.
- 数列an中,a1=1,an+1=2an+2的n次方,设bn=an/2∧n-1,证明bn是等差数列,求数列an的前n项和sn
- 溶液pH值的测定顺口溜
- hour与它的音标[aur]如何对应
- 英文翻译It seemed that Tom didn't go to the party last ningt.Tom seemed_ _go to the party last nigh
猜你喜欢