数列{an}.a1=4,an=4-4/an-1(n>1),bn=1/(an-2),证明数列{bn}是等差数列,及求出数列{an}的通项
其中的a(n-1)的n-1是下标,(an)-2只有n是下标
人气:337 ℃ 时间:2019-08-20 20:05:12
解答
bn-b(n-1)=1/(2-4/(an-1))-1/(a(n-1)-2)
=a(n-1)/(2a(n-1)-4)-2/(2a(n-1)-4)
=(a(n-1)-2)/(2a(n-1)-4)=1/2,
所以数列{bn}是以b1=1/2为首项,公差为1/2的等差数列.
所以bn=n/2,故an=2+2/n.
推荐
- 数列{an}.a1=4,an=4-4/an-1(n>1),bn=1/(an-2),证明数列{bn}是等差数列,及求出数列{an}的通项
- 在数列{an}中,a1=1,an+1=2an+2n; (1)设bn=an2n−1.证明:数列{bn}是等差数列; (2)求数列{an}的通项公式.
- a1=1,an+1=2an+2^n 设bn=an/2^n-1 1证明bn是等差数列 2求an前n项和sn
- 在数列{an}中,a1=3,an+1=3an+3n+1.(1)设bn=an3n.证明:数列{bn}是等差数列;(2)求数列{an}的前n项和Sn.
- 数列an中,a1=1,an+1=2an+2的n次方,设bn=an/2∧n-1,证明bn是等差数列,求数列an的前n项和sn
- it trains less often in Beijing than Shanghai.
- 三打白骨精补充习题第3大题的答案
- how can i get to the librar? 是什么意思
猜你喜欢