①如图(1),
∵∠BPE=90°,
∴∠BPC+∠DPE=90°,又∠BPC+∠PBC=90°,
∴∠PBC=∠DPE,又∠C=∠D=90°,
∴△BPC∽△PED.
如图(2),同理可证△BPC∽△BEP∽△PCE.
②如图(1),∵△BPC∽△PED,
∴△PED与△BPC的周长比等于对应边的比,即PD与BC的比,
∵点P位于CD的中点,
∴PD与BC的比为1:2,
∴△PED与△BPC的周长比1:2,
△PED与△BPC的面积比1:4.
如图(2),∵△BPC∽△BEP,
∴△BEP与△BPC的周长比等于对应边的比,即BP与BC的比,
∵点P位于CD的中点,
设BC=2k,则PC=k,BP= 5 k,
∴BP与BC的比为 5 :2,
△BEP与△BPC的周长比为 5 :2,△BEP与△BPC的面积比为5:4.答案给的是½或(根号5)/2
原来你看的是答案!不过我是这么想的,你也没有给图片啊╮(╯▽╰)╭