四边形ABCD中E、F分别是AD,BC的中点,G,H 分别是BD,AC的中点,求证EF与GH互相平分
人气:227 ℃ 时间:2020-05-10 22:43:55
解答
证明:
顺次连接G、F、H、E成四边形
因为G、F分别是BD、BC的中点
所以GF是三角形BCD的中位线
所以GF‖CD且GF=CD/2
同理可证HE‖CD且HE=CD/2
所以GF‖HE且GF=HE
所以四边形GFHE是平行四边形
所以GH、EF互相平分
供参考!JSWYC
推荐
- 如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,猜一猜EF与GH的位置关系,并证明你的结论.
- 1.如图,在四边形ABCD中,AB=CD,E、F、G、H分别是AD、BC、BD、EF的中点.求证GH垂直平分EF.
- 如图,在四边形ABCD中,AD=BC,E、F、G分别是AB、CD、AC的中点,H是EF的中点,求证:GH垂直EF
- E,F分别是四边形ABCD边AD,BC的重点,G,H是BD,AC的中点.求证:EF与GH互相平分
- 已知E.F分别是四边形ABCD边AD.bc中点,G.H是bDac中点求证ef与gh互相平分
- 已知幂函数y=(m^2-5m+7)x^(m^2-6)在区间(0,+∞)上单调递增,则实数m的值是多少 3,
- 高一文言文句式解析题.
- 8,1,4,5算24点,
猜你喜欢