设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lgx,则满足f(x)>0的x的取值范围是( )
A. (-1,0)
B. (1,+∞)
C. (-1,0)∪(1,+∞)
D. (-1,+∞)
人气:442 ℃ 时间:2019-11-16 23:30:33
解答
由题意及对数函数的性质得函数在(0,1)上函数值小于0,在(1,+∞)函数值大于0,
又函数f(x)是定义在R上的奇函数,
∴函数f(x)在(-1,0)函数值大于0
∴满足f(x)>0的x的取值范围是(-1,0)∪(1,+∞)
故选C
推荐
- 设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lgx,则满足f(x)>0的x的取值范围是( ) A.(-1,0) B.(1,+∞) C.(-1,0)∪(1,+∞) D.(-1,+∞)
- 设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lgx,则满足f(x)>0的x的取值范围是( ) A.(-1,0) B.(1,+∞) C.(-1,0)∪(1,+∞) D.(-1,+∞)
- 设奇函数f(x)的定义域为R,最小正周期T=3,若f(1)>1,f(2)=2a-3/a+1则a的取值范围是
- 已知奇函数f(x)的定义域为R,当x>0时,f(x)=lgx,求x•f(x)≤0的解集.
- 已知函数f(x)是定义域在R上的奇函数,当x大于等于0时,f(x)=x(1+x).求出函数的解析式.? 要详细步骤,辛
- 在△ABC中,DE‖BC,若AD:DB=2:3,则S△ADE:S△EBC=
- 两个点电荷,电量分别是q1=4*10的-9次方*C和 q2=-9*10的-9次方×C,两者固定
- 解方程 5%x+(300-x)x4%=13
猜你喜欢