线性代数问题证明:n维向量组a1.a2…an线性无关的充分必要条件是,任一n维向量a都可由他们线性表示.感激不尽
人气:444 ℃ 时间:2020-02-20 15:03:42
解答
必要性因为任意n+1个n维向量一定线性相关,设a是任意一个n维向量,则向量组a,a1.a2…an必线性相关,又n维向量组a1.a2…an线性无关,a都可由他们线性表示.充分性若任一n维向量a都可由a1.a2…an线性表示,那么,特别的,n维单...
推荐
- 证明n维向量组a1,a2,…,an线性无关的充分必要条件是:任一n维向量a都可以由它们线性表示.
- 求问一道线性代数题目~n维向量组a1=(1,0,0...0)a2=(1,1,0...0)an=(1,1,...1)
- a1,a2,…an是一组n维向量,证明:它们线性无关的充分必要条件是任一n维向量组都可以由它们线性表示.
- 证明:N维向量组a1,a2.an线性无关的充分必要条件是任意n维向量都可以表示为a1,a2.an的线性组合.
- 线性代数,向量,以知n维向量a1,a2,a3线性无关,证明3a1+2a2,a2-a3,4a3-5a1线性无关.用定义方法会了,用秩方法做,
- I’d like(非缩略形式)
- financial crisis in western countries reason how to solve it
- 有关原核生物DNA复制过程中,RNA引物的叙述,哪项是正确的?
猜你喜欢