即(x+y)2=2+xy≥0,所以xy≥-2;
由x2+xy+y2-2=0得:x2-2xy+y2-2+3xy=0,
即(x-y)2=2-3xy≥0,所以xy≤
| 2 |
| 3 |
∴-2≤xy≤
| 2 |
| 3 |
∴不等式两边同时乘以-2得:
(-2)×(-2)≥-2xy≥
| 2 |
| 3 |
| 4 |
| 3 |
两边同时加上2得:-
| 4 |
| 3 |
| 2 |
| 3 |
∵x2+xy+y2-2=0,∴x2+y2=2-xy,
∴M=x2-xy+y2=2-2xy,
则M的取值范围是
| 2 |
| 3 |
故答案为:
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |