设向量a=(-√3/2,cosωx),b=(1,√3cosωx-sinωx)(ω>0),f(x)=ab,若f(x)的最小正周期是π,求ω的值,
人气:317 ℃ 时间:2020-05-12 05:39:54
解答
f(x)=ab=-√3/2+√3cos^2ωx-sinωxcosωx
=-√3/2+√3/2(1+cos2ωx)-1/2sin2ωx
=√3/2cos2ωx-1/2sin2ωx
=cos(2ωx+π/6)
因为周期为π,所以ω的值为1
推荐
- 已知向量a=(sinωx+cosωx,sinωx),向量b=(sinωx-cosωx,2√3cosωx)
- 已知向量a=(cosωx-sinωx,sinωx),b=(-cosωx-sinωx,2√ 3cosωx),
- 已知函数f(x)=向量m·向量n,其中向量m=(sinωx+cosωx,√3cosωx),向量n=(cosωx-sinωx,2sinωx)(ω>0).若f(x)相邻的对称轴间的距离不小于π/2.
- 向量a=(sinωx,-cosωx)b=(sinωx,-3cosωx)c=(-cosωx,sinωx)设f(x)=a·(b+c),求f(x)的最大值
- 已知向量a=(cosωx,sinωx,向量b=(cosωx,根号3cosωx)其中(0
- 整数和小数的四则运算的计算方法: 整数 小数 加法和减法 乘法 除法
- 要求:1、整体思想
- 8个小朋友分6张饼,应如何切,才能使切的次数最少,并且每个小朋友分得的同样多呢?
猜你喜欢