3 |
4 |
抛物线如果开口向上,与直线l会相交,最短距离不会等于1,
所以抛物线开口向下,设其方程为:x2=-2py,(p>0)
抛物线上到直线l距离最短的点,是平行于l的抛物线的切线m的切点,
最短距离就是切线到l的距离.
设m的方程为3x+4y+q=0,令m和l的距离
|q+12|| | ||
|
求得q=-7或-17,q=-17在l下方,舍去.所以m:3x+4y-7=0.
与抛物线方程x2=-2py联立,代入得2x2-3px-7p=0,
只有一个公共点,△=9p2+56p=p(9p+56)=0,得P=
56 |
9 |
所以C的方程:x2=2(-
56 |
9 |
即 9x2+112y=0