设K是奇数,求证:方程x^2+2x+2k=0没有有理根
人气:332 ℃ 时间:2020-03-24 07:01:29
解答
假设等式存在有理根x=a/b,其中a,b为互素的整数,则代入方程得:
(a/b)^2+2(a/b)+2k=0
a^2+2ab+2k*b^2=0
a=b+或-b根号(1-2k)
因为a是整数,所以根号(1-2k)是整数,所以1-2k是平方数
因为k是奇数,所以可以设为2n+1,n是整数
1-2k=1-2(2n+1)=-4n-1>=0,所以n
推荐
- 设K是奇数,求证:方程x2+2x+2k=0没有有理根
- 设k为奇数,求证:方程x2+2x-2k=0没有有理根
- 已知函数f(x)=x^2+2x 若k是奇数,求证:方程f(x)=2k没有有理根
- k为奇数,求证方程x2+2x+2k=0没有有理数根
- 已知函数f(x)=x^2+2x,若k是奇数,求证:方程f(x)=2k没有理想根
- dutch 到底是德国还是荷兰?
- 先观察有什么规律,填写空格-1,1,0,1,1,2,( ),5,
- 急死啦,英语词
猜你喜欢