u=f(ux,v+y),v=g(u-v,v²y),f,g具有一阶连续偏导数,求δu/δx,δv/δx.求详解.
人气:140 ℃ 时间:2020-04-11 17:21:31
解答
求偏导数就把别的参数看作常数即可
δu/δx
=f1' *δ(ux)/δx + f2' *δ(v+y)/δx
=f1' * x*δu/δx +f1' *u + f2' *δv/δx
而
δv/δx
=g1' *δ(u-v)/δx +g2' *δ(v²y)/δx
=g1' *(δu/δx- δv/δx) + 2vy *g2' *δv/δx
于是得到方程组
(1- x *f1')δu/δx - f2' *δv/δx=f1' *u
g1' *δu/δx -(1+g1'-2vy*g2') *δv/δx=0
那么解一元二次方程组得到,
δu/δx
= - f1' *u * (1+g1'-2vy*g2') / [f2' *g1' -(1- x *f1') *(1+g1'-2vy*g2')]
δv/δx
= - f1' *u *g1' / [f2' *g1' -(1- x *f1') *(1+g1'-2vy*g2')]
推荐
- 求函数z=f(u,v),u=x+y,v=xy的复合函数z=g(x,y)的二阶混合偏导数∂²z/∂y∂x.
- f(u,x)具有二阶连续偏导数,
- u=x²f(x+y,x-y),f(u,v)的一阶偏导数连续,求u对y和x的偏导
- 设z=xf(2x,y²/x),其中f具有二阶连续偏导数,求δ²z/δxδy.
- 设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定:exy-xy=2和ex=∫x-z0sint/tdt,求du/dx.
- 急求一篇以‘触动心灵的力量’为话题的记叙作文,600字以上谢谢了.记叙文
- 小学五年级上册江教版语文第8课近反义词
- 设f(x)在【0,1】上连续且∫(0,1)f(x)dx=A,证明∫(0,1)dx∫(x,1)f(x)f(y)dy=A∧2/2,谢谢!
猜你喜欢