若函数f(x)=x^2-2x+m有两个零点,并且不等式f(1-x)大于等于-1恒成立,则实数m的取值范围为
人气:168 ℃ 时间:2019-08-17 19:24:37
解答
f(x)=(x-1)^2+m-1;有两个零点则m-10
0
推荐
- a为实数,函数f(x)=a(x^2-1)+x-m恒有零点,求m的取值范围
- 函数f(x)=m(x^2) - 2x + 1有且仅有一个正实数的零点,则实数m的取值范围是
- 若函数f(x)=ax-x-a(a>0且a≠1)有两个零点,则实数a的取值范围是( ) A.0<a<1 B.0<a<12 C.a>2 D.a>1
- 设函数f(x)=x^3 若0≤θ≤Л/2时,不等式f(msinθ)+f(1-m)>2恒成立,则实数m的取值范围是
- 是否存在实数a,使得函数f(x)=ax^2+bx+b-1对于任意实数b恒有两个零点?若存在,求出a的取值范围
- 有关地理的诗句
- 英语翻译
- 一定量的铁粉和硫粉的混合物,隔绝空气加热,待充分反应后冷却,让反应后的混合物与足量盐酸反应,生成气体2.24L(标况),下列说法中一定正确的是
猜你喜欢
- 为什么在雨过天晴之后,空气格外清新?
- BC是⊙o直径,P是⊙o上一点,A是弧BP中点,AD垂直于BC于点D,BP与AD交于点E,若∠ACB=36,求弧AB的长
- 脱式计算:2.5×1.6 12.5×10.1 1.6×1.25 12.5×9.
- 在消费者均衡点以上的无差异曲线的斜率大于预算线的斜率吗?为什么?
- 已知AB是半圆O的直径,BC是弦,E是弧BC的中点,OE交BC于D,已知BC=8,DE=2,求OD和AD的长.
- 喉咙只有一点红肿用英语怎么说?
- 有的课文吗?人教版第九册
- 西藏边境与哪些国家相邻?