1 |
2 |
1 |
3 |
1 |
4 |
13 |
12 |
(2)假设当n=k(k≥2)时成立,即
1 |
k |
1 |
k+1 |
1 |
k+2 |
1 |
k2 |
那么当n=k+1时,左边=
1 |
k+1 |
1 |
k+2 |
1 |
k+3 |
1 |
(k+1)2 |
=
1 |
k |
1 |
k+1 |
1 |
k+2 |
1 |
k+3 |
1 |
k2+2k |
1 |
(k+1)2 |
1 |
k |
>1+
1 |
k2+1 |
1 |
k2+2 |
1 |
(k+1)2 |
1 |
k |
>1+(2k+1)•
1 |
(k+1)2 |
1 |
k |
k2−k−1 |
k2+2k+1 |
∴n=k+1时也成立(7分)
根据(1)(2)可得不等式对所有的n>1都成立(8分)