| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 13 |
| 12 |
(2)假设当n=k(k≥2)时成立,即
| 1 |
| k |
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| k2 |
那么当n=k+1时,左边=
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| (k+1)2 |
=
| 1 |
| k |
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| k2+2k |
| 1 |
| (k+1)2 |
| 1 |
| k |
>1+
| 1 |
| k2+1 |
| 1 |
| k2+2 |
| 1 |
| (k+1)2 |
| 1 |
| k |
>1+(2k+1)•
| 1 |
| (k+1)2 |
| 1 |
| k |
| k2−k−1 |
| k2+2k+1 |
∴n=k+1时也成立(7分)
根据(1)(2)可得不等式对所有的n>1都成立(8分)
