利用数学归纳法证明不等式“1+1/2+1/3+……+1/[(2^n)-1]=2,n∈N*)”的证明过程中,由“n=k”到由“n=k+1"时,左边增加的式子是_______.
1/2^k +1/(2^k +1) +……+1/[2^(k+1) -1]是怎么来的?
人气:414 ℃ 时间:2019-08-21 13:28:56
解答
原来的和式最后一项是1/[(2^k)-1],现在和式的最后一项是1/[2^(k+1) -1],增加的项就是从1/2^k开始,分母依次加1,直至1/[2^(k+1) -1】;
比如 n=2时,最后一项是1/3;n=3时,最后一项是1/7,增加的项有1/4+1/5+1/6+1/7,以此类推.
推荐
- 用数学归纳法证明不等式:1/n+1/n+1+1/n+2+…+1/n2>1(n∈N*且n>1).
- 已知(1+1/x)^x 在x>=1时无限接近y=e,用数学归纳法证明:n>=6时,不等式 (n/3)^n < < (n/2)^n.
- 用数学归纳法证明对于任意大于1的正整数n,不等式1/(2^2)+1/(3^2)+…+1/(n^2) 小于(n-1)/n
- 用数学归纳法证明“1+12+13+…+12n−1<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是( ) A.2k-1 B.2k-1 C.2k D.2k+1
- 用数学归纳法证明不等式1/(n+1)+1/(n+2)+…+1/(n+n)>13/24
- -1到-5之间只有3个负数._.(判断对错)
- 一道六年级语文题~~快来~急
- different,in,Shanghai,was,many,years,ago,life,very连词成句
猜你喜欢