即a+b+c=-a,
∴c=-2a-b,
即b+c=-2a;
又∵a>2c>3b,
∴-2a=b+c<
| a |
| 3 |
| a |
| 2 |
| 5a |
| 6 |
即
| 5a |
| 6 |
∴a>0;
又∵a>2c,
即a>2(-2a-b),
∴a>-4a-2b
即5a>-2b,
∴
| b |
| a |
| 5 |
| 2 |
∵2c>3b,
∴2(-2a-b)>3b,
即-4a-2b>3b,
∴-4a>5b,
∴
| b |
| a |
| 4 |
| 5 |
∴-
| 5 |
| 2 |
| b |
| a |
| 4 |
| 5 |
即
| b |
| a |
| 5 |
| 2 |
| 4 |
| 5 |
故答案为:(-
| 5 |
| 2 |
| 4 |
| 5 |
| b |
| a |
| a |
| 3 |
| a |
| 2 |
| 5a |
| 6 |
| 5a |
| 6 |
| b |
| a |
| 5 |
| 2 |
| b |
| a |
| 4 |
| 5 |
| 5 |
| 2 |
| b |
| a |
| 4 |
| 5 |
| b |
| a |
| 5 |
| 2 |
| 4 |
| 5 |
| 5 |
| 2 |
| 4 |
| 5 |