(2005•兰州)已知关于x的一元二次方程x2-2(R+r)x+d2=0没有实数根,其中R、r分别为⊙O1、⊙O2的半径,d为两圆的圆心距,则⊙O1与⊙O2的位置关系是( )
A. 外离
B. 相交
C. 外切
D. 内切
人气:310 ℃ 时间:2020-04-16 16:04:15
解答
依题意,4(R+r)2-4d2<0,
即(R+r)2-d2<0,
则:(R+r+d)(R+r-d)<0.
∵R+r+d>0,
∴R+r-d<0,
即:d>R+r,
所以两圆外离.
故选A.
推荐
- 如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是⊙O的切线.问: (1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么上
- 如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=1/2,∠CAD=30°. (1)求证:AD是⊙O的切线; (2)若OD⊥AB,BC=10,求图中阴影部分的面积.
- 如图,Rt△ABC中,∠C=90°,O是AB边上一点,⊙O与AC、BC都相切,若BC=3,AC=4,则⊙O的半径为( ) A.1 B.2 C.52 D.127
- 在直角三角形ABC中,∠BCA=90°,AB=AC=5厘米,以AB为直径作半圆,与BC相交于点D,求:三角形ABC和半圆重叠部分的面积.
- 一块长方形铁片,长18.84DM,宽5dm,用这块铁皮卷成一个圆柱形水桶的侧面,另配一个底面制成一个底面积最大
- 中国历史上推行法家学派治理国家的有为皇帝都有哪些?
- f(x)在[a,b]上连续,在(a,b)可导,且在(a,b)内f(x)的二阶导数小于0,证明f(x)是单调递减的 是知道怎么证明
- 4x-3.6=5分之4x+6
猜你喜欢