即 lg
| 1-ax |
| 1-2x |
| 1+ax |
| 1+2x |
而lg
| 1-ax |
| 1-2x |
| 1+ax |
| 1+2x |
|
再由
| 1+2x |
| 1-2x |
| 1 |
| 2 |
| 1 |
| 2 |
依题意知:(-b,b)⊆(-
| 1 |
| 2 |
| 1 |
| 2 |
∴0<b≤
| 1 |
| 2 |
| 1 |
| 2 |
(2)函数f(x)在区间(-b,b)上单调递减.
由(1)知,f(x)=lg
| 1-2x |
| 1+2x |
∀x1,x2∈(-b,b),且-
| 1 |
| 2 |
| 1 |
| 2 |
从而 f(x2)-f(x1)=lg
| 1-2x2 |
| 1+2x2 |
| 1-2x1 |
| 1+2x1 |
| (1-2x2)(1+2x1) |
| (1+2x2)(1-2x1) |
∴f(x1)>f(x2),故函数f(x)在区间(-b,b)上单调递减.
