已知数列{an}满足an-1-2an+an+1=0(n∈N*且n≥2),且a1=2,a3=4.数列{bn}的前n项和为Sn=2bn-1(n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)符号[x]表示不超过实数x的最大整数,记cn=[log2(an-1)],Tn为数列{cn}的前n项和,求T2n.
人气:126 ℃ 时间:2020-05-10 04:58:18
解答
(1)∵数列{an}满足an-1-2an+an+1=0(n∈N*且n≥2),
∴数列{an}是等差数列,设公差为d,
∵a1=2,a3=4.∴a3-a1=2d=4-2,解得d=1.
∴an=2+(n-1)=n+1.
由数列{bn}的前n项和为Sn=2bn-1(n∈N*).
当n≥2时,bn=Sn-Sn-1=(2bn-1)-(2bn-1-1),化为bn=2bn-1.
当n=1时,b1=2b1-1,b1=1.
∴数列{bn}是等比数列,∴bn=2n-1.
(2)由(1)知an=n+1,∴cn=[log2n].
当2k≤n<2k+1时,[log2n]=k,k∈N.
∴T2n=[log21]+[log22]+…+[log2(2n-1)]+[log22n]
=([log221]+[log23])+([log222]+…+[log27])+([log223]+…+[log215])+…+([log22n-1]+[log2(2n-1+1)]+…+[log2(2n-1)])+[log22n],
∴T2n=2+2×22+3×23+…+(n-1)2n-1+n,
2T2n=1×22+2×23+…+(n-2)2n-1+(n-1)2n+2n,
两式相减得:-T2n=2+22+…+2n-1-n-(n-1)2n,
∴T2n=(n-2)2n+n+2.
推荐
- 已知数列an满足a1=0且Sn+1=2Sn+1/2n(n+1) 1,求 a2 a3,并证明an+1=2an+n 2,设bn=an+1-an,求证bn+1=2bn+
- 数列an满足a1+a2+a3+...+an=n^2,若bn=1/an(an+1),求bn的和sn
- 已知数列{an}是等差数列,且a1=2,a1+a2+a3=12 (1)求数列{an}的通项公式.(2)令bn=3^an,求{bn}的前n项和sn
- 已知数列{an}满足:1•a1+2•a2+3•a3+…n•an=n (1)求{an}的通项公式; (2)若bn=2nan,求{bn}的前n项和Sn.
- 已知正项等比数列{an}中,a1=3,a3=243,若数列{bn}满足bn=log3an,求数列{1/bnbn+1}的前n项和Sn
- give one's life to的life是可数的吗?
- 解释下列带括号的词语1.月景尤不可(言)2.(别)是一种趣味
- 一元二次方程的x2=x两根之和与积分别是_,_.
猜你喜欢