所以(an-2)(bn-2)=anbn-2(an+bn)+4=-2n2-2(n+2)+4=-2n(n+1),
则
1 |
(an-2)(bn-2) |
1 |
2n(n+1) |
1 |
2 |
1 |
n |
1 |
n+1 |
∴
1 |
(a2-2)(b2-2) |
1 |
(a3-2)(b3-2) |
1 |
(a2007-2)(b2007-2) |
=-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2007 |
1 |
2008 |
1 |
2 |
1 |
2 |
1 |
2008 |
1003 |
4016 |
故答案为:-
1003 |
4016 |
1 |
(a2-2)(b2-2) |
1 |
(a3-2)(b3-2) |
1 |
(a2007-2)(b2007-2) |
1 |
(an-2)(bn-2) |
1 |
2n(n+1) |
1 |
2 |
1 |
n |
1 |
n+1 |
1 |
(a2-2)(b2-2) |
1 |
(a3-2)(b3-2) |
1 |
(a2007-2)(b2007-2) |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2007 |
1 |
2008 |
1 |
2 |
1 |
2 |
1 |
2008 |
1003 |
4016 |
1003 |
4016 |