大学线性代数矩阵题设C为3阶矩阵,且已知r(C)=1
证明:1.存在3x1矩阵A=(a1 a2 a3)(三行一列)和1x3矩阵B=(b1 b2 b3)(一行三列),使C=AB
2.C^2=kC
人气:445 ℃ 时间:2020-05-08 04:01:08
解答
rankC=1所以C的三行成比例!
C=
a1(b1 b2 b3)
a2(b1 b2 b3)
a3(b1 b2 b3)
=
a1
a2 * b1 b2 b3
a3
C=AB
C²=ABAB=A(BA)B
BA=a1b1+a2b2+a3b3=k(常数)
C²=kAB=kC
推荐
- 一道大学线性代数证明题:设n阶矩阵A满足A的平方=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n
- 大学线性代数矩阵问题
- 线性代数矩阵习题
- 大学线性代数的矩阵题目求解 、 1 利用伴随阵求逆阵 (-1 2 -3 )
- 大学线性代数证明题,设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值
- 几辆车运货,如果每车装3.5t,那这批货就有2t不能运走;如果每辆车装4t货,那么装完后,还可装1t其他货物
- 个性签名 静守己心,看淡浮华,心若沉浮,浅笑安然.啥意思?
- y=√x-2+√2-x的差+3,求y的x次方的平方根
猜你喜欢