数列1/2*5,1/5*2,1/8*1,...,1/(3n-1)(3n+2),...求它的前n项和
人气:224 ℃ 时间:2020-01-26 02:37:56
解答
1/(3n-1)(3n+2)=1/3*[1/(3n-1)-1/(3n+2)]
Σ1/(3n-1)(3n+2)=1/3*{[1/2-1/5]+[1/5-1/8]+...+[1/(3n-4)-1/(3n-1)]+[1/(3n-1)-1/(3n+2)]}
=1/3[1/2-1/(3n+2)]
=n/(6n+4)Σ什么意思Σ表示求和 Σ1/(3n-1)(3n+2) 代表 1/2*5+1/5*8*+1/8*11+...+1/(3n-1)(3n+2)的意思
推荐
- 求数列1/3n(3n+2)的前n项和
- 求数列2+a,5+a²,8+a³,.(3n-1)+a^n的前几项和
- 求数列-1,4,-7,10,···,(-1)^(3n-2)的前n项和,急.
- 求数列的前n项和:1+1,1/a+4,1/a2+7,…,1/an−1+3n−2,….
- 求数列1/3,2/9,3/27,···,n/3n,···的前n项和
- 廉颇说:“我廉颇攻无不克、战无不胜,立下许多大功” 改成第三人称的句子.
- 曲线x^2+y^2+z^2-3x=0和2x-3y+5z-4=0在点(1,1,1)上的法平面方程.
- 对于整数a,b,c,d,符号|a b|表示运算ac-bd.|d c
猜你喜欢