1.因为指数分布,E(x)=1,D(x)=1,所以E(x^2)=D(x)+(E(x))^2=2
D(x^2)=E(x^4)-(E(x^2))^2=积分(X^4e^-x)-4=24-4=20(用分部积分法)
2.E(x)=积分(ax e^-ax)=1/a,D(x)=1/(a^2)
3.f(x)=(2/pai)*(1/(1+x^2)) ,x < |1|
E(x)=积分(1,-1){2/pai * x/(1+x^2)}=1/pai*[In(1+x^2)]|(-1,1)=0
E(x^2)=积分(1,-1){2/pai * x^2/(1+x^2)}=积分(-1,1)2/pai{1-1/(1+x^2)}=2/pai[x-arctan x]|(1,-1)=4/pai -1
D(x)=E(x^2)-E(x)*E(x)=4/pai-1
3,F(x)= 0 ,x