∴2x2+3x=1,
原式=
2x−3 |
2x(2x−1) |
(2x+1)(2x−1)−8 |
2x−1 |
=
2x−3 |
2x(2x−1) |
2x−1 |
4x2−9 |
=
2x−3 |
2x(2x−1) |
2x−1 |
(2x+3)(2x−3) |
=
1 |
2x(2x+3) |
=
1 |
2(2x2+3x) |
当2x2+3x=1时,原式=
1 |
2×1 |
1 |
2 |
2x−3 |
4x2−2x |
8 |
2x−1 |
2x−3 |
2x(2x−1) |
(2x+1)(2x−1)−8 |
2x−1 |
2x−3 |
2x(2x−1) |
2x−1 |
4x2−9 |
2x−3 |
2x(2x−1) |
2x−1 |
(2x+3)(2x−3) |
1 |
2x(2x+3) |
1 |
2(2x2+3x) |
1 |
2×1 |
1 |
2 |