函数f(x)有连续二阶导数,且f(0)=0,f'(0)=1,f''(0)=-2,则(x→0)lim(f(x)-x)/x2=?
最后是除以x的平方,那个2打大了点哈
人气:389 ℃ 时间:2019-08-16 23:15:43
解答
下列极限都是趋于0,我就不重复写x→0
∵函数f(x)有连续二阶导数
∴f'(x),f''(x)都存在
可以利用洛必达法则
lim(f(x)-x)/x2 (0/0型)
=lim(f'(x)-1)/2x (0/0型)
=limf''(x)/2
=f''(0)/2
=-1
推荐
- 若函数f(x)在点x=a处的导数为A,则lim(Δx→0)[f(a+Δx)-f(a-Δx)]/2Δx=?
- 函数f(x)在[1,+∞)上具有连续导数,且lim(x→+∞)f'(x)=0,则...
- 函数f(x)可导,且f(1)的导数为2,则 lim(x→∞) f(1-2x)-f(1)/x
- 设函数f(x)有连续的二阶导数,且f '(0)=0,x趋近于0时,lim f ''(x)/|x|=1,
- 求函数的导数f(x)=3x^2-1 要用这种方法求 f’ (x)= lim△y/△x(△x趋于0),
- 计算物质的量时原子的量和分子的量有什么不同
- 氢气爆炸是什么反应
- 一架飞机的飞行时间和航程如下表.
猜你喜欢