设F是从A到B的一个函数,定义A上的关系R:aRb当且仅当f(a)=f(b),证明:R是A上的等价关系.
人气:217 ℃ 时间:2019-12-07 10:32:52
解答
很显然,R是A上的非空关系,因为恒等关系IA包含于R.
对任意的a∈A,aRa是显然的. 自反性成立.
对任意的a,b∈A,若aRb,则f(a)=f(b),所以bRa. 对称性成立.
对任意的a,b,c∈A,若aRb,bRc,则f(a)=f(b)=f(c),所以aRc. 传递性成立.
所以,R是A上的等价关系.
推荐
- 证明R为等价关系.
- 离散数学题,设R是A上的二元关系,定义S={(a,b)|∃ c∈A,(a,c)∈R,(c,b)∈R},证明
- 设R是N*N上的关系,定义如下:(A,B)R(C,D)AD=BC,证明R是等价关
- 对于函数f:ZxZ->ZxZ,f()=,证明f是单射函数、满射函数.
- 离散数学证明等价关系
- It can also i____ the way we behave with our family.怎么填
- 一根绳子不足一百米,四等分还剩两米,六等分还剩四米,绳子有多长?
- 1、没想到,嘎羧见了,一下子安静下来,用鼻子呼呼吹去上面的灰尘,鼻尖( )地在上面摩挲着,眼睛里( )像是见到( )
猜你喜欢