已知x1、x2、xn∈(0,+∞),求证:x1^2/x2+x2^2/x3+…+xn-1^2/xn+xn^2/x1≥x1+x2+…+xn
人气:256 ℃ 时间:2019-09-01 08:43:42
解答
证明:
x1,x2,...xn>0,使用均值不等式,
(x1)^2/x2+x2≥2x1,
(x2)^2/x3+x3≥2x2,
...
(xn)^2/x1+x1≥2x1,
上述所有式子相加再两边除以2,得到
(x1)^2/x2+(x2)^2/x3+...(xn)^2/x1≥x1+x2+...+xn
如果知道柯西不等式,有
[(x1)^2/x2+(x2)^2/x3...+(xn)^2/x1](x2+x3+...+x1)
≥{√[(x1)^2/x2*x2]+√[(x2)^2/x3*x3]+..+√[(xn)^2/x1*x1]}^2
=(x2+x3+...+x1)^2
两边同除以(x2+x3+..+x1)
也得到要证明的不等式.
推荐
- 已知x1,x2,………xn均为正数,求证:x2/√x1+x3/√x2+……x1/√xn≥√x1+√x2 + ……√xn
- 已知X1+X2+X3+X4+……+Xn,求证X1方加X2方加X3方一直加到Xn方≥n分之一.
- 已知x1、x2、x3、…、xn都是+1或-1,并且x1x2+x2x3+x3x4+…+xn−1xn+xnx1=0,求证:n是4的倍数.
- 设x1,x2,x3.xn都是正数,求证:x1^2/x2+x2^2/x2+.+xn-1^2/xn+xn^2/x1>=x1+x2+x3+.+xn.
- 已知X1,X2,X3,...Xn中每一个数值只能取-2,0,1中的一个,且满足:X1+X2+X2+...+Xn=-17,X1²+X2²+X3²+...+Xn²=37
- 预初英语题目 We are going to live in a new flat next mo
- 仓库里有一批货物,运出3/5后,有运进20吨,这时仓库里的货物正好是原来的1/2,仓库里原来有货物多少吨.
- sinx×lnx.x趋于零时极限怎么算
猜你喜欢