已知x1、x2、xn∈(0,+∞),求证:x1^2/x2+x2^2/x3+…+xn-1^2/xn+xn^2/x1≥x1+x2+…+xn
人气:192 ℃ 时间:2019-09-01 08:43:42
解答
证明:
x1,x2,...xn>0,使用均值不等式,
(x1)^2/x2+x2≥2x1,
(x2)^2/x3+x3≥2x2,
...
(xn)^2/x1+x1≥2x1,
上述所有式子相加再两边除以2,得到
(x1)^2/x2+(x2)^2/x3+...(xn)^2/x1≥x1+x2+...+xn
如果知道柯西不等式,有
[(x1)^2/x2+(x2)^2/x3...+(xn)^2/x1](x2+x3+...+x1)
≥{√[(x1)^2/x2*x2]+√[(x2)^2/x3*x3]+..+√[(xn)^2/x1*x1]}^2
=(x2+x3+...+x1)^2
两边同除以(x2+x3+..+x1)
也得到要证明的不等式.
推荐
- 已知x1,x2,………xn均为正数,求证:x2/√x1+x3/√x2+……x1/√xn≥√x1+√x2 + ……√xn
- 已知X1+X2+X3+X4+……+Xn,求证X1方加X2方加X3方一直加到Xn方≥n分之一.
- 已知x1、x2、x3、…、xn都是+1或-1,并且x1x2+x2x3+x3x4+…+xn−1xn+xnx1=0,求证:n是4的倍数.
- 设x1,x2,x3.xn都是正数,求证:x1^2/x2+x2^2/x2+.+xn-1^2/xn+xn^2/x1>=x1+x2+x3+.+xn.
- 已知X1,X2,X3,...Xn中每一个数值只能取-2,0,1中的一个,且满足:X1+X2+X2+...+Xn=-17,X1²+X2²+X3²+...+Xn²=37
- 一个空瓶子用天平称得质量为300g,再将此瓶子装满水,称得总质量为900g,把水倒掉装满另一种油,称得总质量为800g,那么这种油的密度为多少?
- naturallyenough 是什么意思
- mother mom mommy 有什么区别.口气上的 还有grandmother grandma?
猜你喜欢
- ph缓冲剂的配制中,有的人说是要煮沸的蒸馏水冷却后配制,请问有这个必要么?
- 利用动力臂是阻力臂的3倍的杠杆将重600牛的物体抬高,若手向下的压力是250牛,手下降的高度是30厘米,则物
- 高中物理运动学与力学相结合的一道计算题
- 眼镜的复数 土豆的复数
- f(x)在R上有意义,f(x)≠0,f(xy)=f(x)f(y),求f(2007)=?
- A.How many B,How far C,Howlong D,How often
- 《夜莺的歌声》这篇课文主要讲一个什么故事?
- 等压线愈稀疏,表示气压梯度愈小