f(x)=1/4 x^4+x^3- 9/2 x^2+cx有三个极值点,证明-27
人气:293 ℃ 时间:2019-12-10 18:55:19
解答
f(x)有三个极值点,说明f'(x)=0至少有3个解
f'(x)=x^3+3x^2-9x+c
f''(x)=3x^2+6x-9=3(x-1)(x+3)
f''(x)=0得x=1或-3
而f'(-3)=27+c,f'(1)=c-5
要使得f'(x)=0有3个解
则有f'(-3)>0,f'(1)
推荐
- 已知函数f(x)=1/4x4+x3−9/2x2+cx有三个极值点. (I)证明:-27<c<5; (II)若存在实数c,使函数f(x)在区间[a,a+2]上单调递减,求a的取值范围.
- 已知函数f(x)=1/4x4+x3−9/2x2+cx有三个极值点. (I)证明:-27<c<5; (II)若存在实数c,使函数f(x)在区间[a,a+2]上单调递减,求a的取值范围.
- 已知函数f(x)=x^4/4+x³-9x²/2+cx有三个极值点,证明:-27
- f(x)=ax^3+cx+d是R上的奇函数,当x=1时取得极值-2.证明任意x1,x2∈(-1,1),|f(x1)-f(2)
- 已知函数f(x)=1/4x4+x3−9/2x2+cx有三个极值点. (I)证明:-27<c<5; (II)若存在实数c,使函数f(x)在区间[a,a+2]上单调递减,求a的取值范围.
- 用容量瓶定容时仰视读刻度,读出来的体积实际上是偏大还是偏小,和量筒一样不?
- 有定义int a=2,b=3,c=10;则计算表达式 a+=b+2,c-=a+1 后c的值是
- you can never tell
猜你喜欢