有2个实数根
判别式=(k-2)^2-4(k^2+3k+5)
=k^2-4k+4-4k^2-12k-20
=-3k^2-16k-16>=0
3k^2+16k+16<=0
(3k+4)(k+4)<=0
-4<=k<=-4/3
x1+x2=k-2,x1*x2=k^2+3k+5
x1^2+x2^2
=(x1+x2)^2-2x1x2
=(k-2)^2-2(k^2+3k+5)
=k^2-4k+4-2k^2-6k-10
=-k^2-10k-6
=-(k+5)^2+19
-4<=k<=-4/3
所以k=-4时,最大值=18