在数列{an}中,a1=1,an=2(an-1-1)+n(n≥2,n∈N*)
(1)求a2,a3的值;
(2)证明:数列{an+n}是等比数列,并求{an}的通项公式;
(3)求数列{an}的前n项和Sn.
人气:480 ℃ 时间:2019-09-26 00:23:09
解答
(1)a
1=1,a
n=2a
n-1+n-2(n≥2,n∈N
*)
∴a
2=2a
1+2-2=2…(2分)
a
3=2a
2+3-2=5…(4分)
(2)证明:∵
==2∴数列{a
n+n}是首项为a
1+1=2公比为2的等比数列…(7分)
a
n+n=2•2
n-1=2
n,即a
n=2
n-n
∴{a
n}的通项公式为a
n=2
n-n…(9分)
(3)∵{a
n}的通项公式为a
n=2
n-n
∴S
n=(2+2
2+2
3+…+2
n)-(1+2+3+…+n)…(11分)
=
−=2n+1−…(12分)
推荐
- 一个等比数列{an}中,a1+a4=133,a2+a3=10,求这个数列的通项公式.
- 一个等比数列{an}中,a1=a4=133,a2+a3=70,求这个数列的通项公式
- 已知等比数列an中,a1=2,a3+2是a2和a4的等差中项,(1)求数列an的通项公式.
- 一个等比数列an 中 ,a1+a4=28 a2+a3=12,求这个数列的通项公式
- 设{an}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{an}的通项公式; (Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.
- I will always be with you until the end of time if you'd never leave me
- 四个不同的小球放入编号为1,2,3,4的盒子中. (1)共有多少种不同的放法?(结果用数字作答) (2)若每个盒子均有一球,共有多少种不同的放法?(结果用数字作答) (3)恰好有一
- 物理失重超重公式
猜你喜欢
- 幼儿园有50个小朋友,现有玩具240件,把这些玩具分给小朋友,是否一定有小朋友得到6件或6件以上玩具
- 习题1-1 第三题
- 已知一个直角三角形的周长4+2√6,斜边上中线为2,则这个三角形面积为
- 某容器最多能装500G酒精,现要装2.25KG密度为0.9X10的3次方KG/M的某种液体,至少需要此容器多少个
- Yesterday I cleaned the room and washed up. I did my homework, _____. A.as well B.too C.either
- 当k= _ 时,代数式x2-3kxy-2y2+3xy+1中不含xy项.
- x=a^2b^2+5,y=2ab-a^2-4a,若x>y,则实数a,b满足的条件是
- C语言编程——选择排序法,要求:由主函数调用排序子函数,对n个整数进行从小到大的排序,谢了