(1)∵将△BOC绕点C按顺时针方向旋转60°得△ADC,
∴△ADC≌△BOC,∠OCD=60°
∴OC=OD
则△COD是等边三角形;
(2)△AOD为直角三角形.
∵△COD是等边三角形.
∴∠ODC=60°,
∵∠ADC=∠BOC=α=150°,
∴∠ADO=∠ADC-∠CDO=150°-60°=90°,于是△AOD是直角三角形.
(3)α=125°.
理由:∵△AOD是以OD为底边的等腰三角形,
∴∠AOD=∠ADO=∠ADC-60°=α-60°.
∵110°+α+(60°+∠AOD)=360°,
∴110°+α+(60°+α-60°)=360°,
解得α=125°.